Operations

Production deployment

Didmos consists of different modules (see didmos 2.0). Some of these modules are based on existing open source software with configuration and
extensions provided by DAASI (e. g. the LDAP server in didmos Core or didmos Auth). Other modules are developed and shipped by DAASI (e.g. didmos
LUI) . Therefore the deployment and operations model for the components is quite heterogenous.

Deployment is supported as either Docker containers or as a VM based deployment for most components with some exceptions as per the following list:

Docker VM based (Ubuntu)

Core yes yes
LUI yes yes
Authenticator yes yes
Provisioner yes no
ETL yes no
Pwd Synchronizer | no yes

For VM based deployment only Ubuntu 18/20 is currently supported.

Docker deployment
Docker images are provided for all components (except Pwd Synchronizer) and this is the preferred deployment model.
In order to run didmos as docker containers the following requirements must be met:

- docker: https://docs.docker.com/compose/install/, version 20.10.0 or later
- docker-compose: https://docs.docker.com/compose/install/, version 1.25.0 or later

A docker-compose.yml file describes the system as a whole. See the following documentation and example for didmos2-demo:
https://gitlab.daasi.de/didmos2-demo/didmos2-demo-compose/-/tree/master/deploy

The docker-compose.yml file for individual projects might deviate from this example, as more or less components are included and configuration might be
different. Furthermore a .env file must be located in the same directory which contains deployment specific variables.

On the docker host these files are usually located in either /root/docker or /opt/didmos.

The following commands might be useful for operations:

Start
docker - conpose up -d

Stop
docker - conpose down

Display Status
docker - conpose ps

Show | ogs of individual container
docker | ogs {container-nane}

Restart individual container
docker restart {container-nane}

VM based deployment

For the VM based deployment project specific Ansible roles are provided for initial setup. The general setup is documented here: https://gitlab.daasi.de
/didmos2/didmos2-compose/-/tree/master/ansible

Please note that most didmos projects are extended by project specific roles for setup of extensions and project specific components. Generally these
roles are also required for a full setup.

After running the initial setup via Ansible please refer to the following chapters for details on operations for each of the didmos modules:

https://wiki.daasi.de/display/DOK/didmos+2.0
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://gitlab.daasi.de/didmos2-demo/didmos2-demo-compose/-/tree/master/deploy
https://gitlab.daasi.de/didmos2/didmos2-compose/-/tree/master/ansible
https://gitlab.daasi.de/didmos2/didmos2-compose/-/tree/master/ansible

Module specific details

didmos Core

Docker

didmos Core consists of two Docker containers:

Container Description

{project-name}-core API

{project-name}-openldap | LDAP Metadirectory

The logs of each component can be accessed via docker logs.

docker 1ogs {container-nane}

Configuration is possible via docker environment variables (for supported parameters). An example for this configuration is described in section Provisioner
- Docker.

VM based

LDAP Metadirectory
The LDAP Metadirectory is installed via the Ubuntu distribution during the initial Ansible setup (i.e. apt install sl apd) .

It can be administered using the following commands:

systenct| {start|stop|restart|status} slapd

slapd logs using rsyslog. The logging is configured in the file rsyslog.conf. The most recent logged messages can be read using this command:

journalctl -r -t openldap

The configuration of the log level for slapd uses the attribute olcLogLevel in the cn=config subtree in the LDAP Metadirectory. The value can be changed
using a LDAP client (e. g. Apache Directory Studio) using cn=config as Base-DN.

These log levels are supported:

Table 7.1: Debugging Levels
Level Keyword Description
-1jjany enable all debugging
‘ UH Hno debugging |
‘ 1H(0x1 trace) Htrace function calls |
2/(0x2 pacﬂ:ets) debug packet handling
4/|(0x4 args) heavy trace debugging

8/(0x8 conns) |connection management

16/(0x10 BER) |jprint out packets sent and received
‘ 32H(Ox20 filter) Hsearch filter processing |

‘ 64H(0x40 config) Hconfiguration processing |
128|(0x80 ACL) |access control list processing

256//(0x100 stats) |istats log connections/operations/results

512(|(0x200 stats2) ||stats log entries sent

‘ 1024”(0}(400 shell) Hprint communication with shell backends |
‘ 2[]48“(0}(800 parse) Hprint entry parsing debugging |

16384/(0x4000 sync) | syncrepl consumer processing

32768|(0x8000 none) |jonly messages that get logged whatever log level is set

Numeric values and keywords for log levels are equivalent.
More information about logging and debugging OpenLDAP can be found in the documentation:

® https://www.openldap.org/doc/admin24/slapdconfig.html
® https://www.openldap.org/doc/admin24/tuning.html#Logging

didmos Core API Server

The didmos Core API server is installed as a python virtual environment and deployed as a mod_wsgi app in Apache webserver. The following locations
on the VM are used:

Component Location in file system
Python Virtual environment /opt/didmos2coreEnv
Python application /opt/didmos2core

Configuration (Templates and default config) = /opt/didmos2core/general
/opt/didmos2core/customer/customer_config

Configuration (Overrides) /etc/didmos/core

Logs Ivar/log/didmos

Apache config (mod_wsgi integration) /etc/apache2/sites-available/api-ssl.conf
Apache logs Ivar/log/apache2

Restarting the didmos Core API server is possible via the Apache webserver:

systentt| {start|stop|restart|status} apache2

Backups of LDAP database

The core data of a didmos system is stored in the LDAP server and therefore backups of the entire LDAP server should be done regularly.

https://www.openldap.org/doc/admin24/slapdconfig.html
https://www.openldap.org/doc/admin24/tuning.html#Logging

This can be done in different ways:
1. Full VM snapshot
2. Backup of data folders
a. /var/lib/ldap (mdb database)
b. /etc/openldap/slapd.d (config)
c. IMIGRATIONS (state of migrations)
3. LDIF export
Note that in case of a docker deployment the folders are stored in docker volumes with the following names, which must be backed up:
* {project-name}-openldap-db

* {project-name}-openldap-config
* {project-name}-openldap-mig

didmos LUI

Docker
didmos LUI consists of the following Docker container:
® {project-name}-frontend
In this container, the compiled frontend (Angular JavaScript app with assets like images, CSS-files etc.) is shipped using an nginx webserver.

The logs can be accessed via docker logs (see list of general commands). Since the application itself runs as Java Script in the web browser, for
debugging purposes the browser console might be more useful than the server side logs.

Configuration is possible via docker environment variables (for supported parameters). An example for this configuration is described in section Provisioner
- Docker.

VM based

The compiled frontend (Angular JavaScript app with assets like images, CSS-files etc.) is located in /var/www/didmos2lui and then shipped as static files
using an Apache webserver. The following locations on the VM are used:

Component Location in file system
Frontend files Ivar/www/didmos2lui
Configuration file | /var/www/didmos2Iui/assets/config/environment.json
Apache config letc/apache?2/sites-available/lui-ssl.conf

Apache logs Ivarllog/apache2

In general, changes to the functionality always require recompiling the static files from source and then redeploying the compiled application on the VM.

didmos Auth

Docker

didmos Auth consists of the following Docker container:

Container Description

{project-name}-auth Application

{project-name}-mongo = MongoDB Database

In the -auth container Auth is running as a mod_wsgi application inside an Apache webserver.
The -mongo container is running a MongoDB for storage of the OIDC OP (i.e. registered clients, tokens).
The logs can be accessed via docker logs (see list of general commands).

Configuration is possible via docker environment variables (for supported parameters). For a list of general environment variables refer to didmos2
Authenticator. An example for this configuration is described in section Provisioner - Docker.

VM based

https://wiki.daasi.de/display/DOK/didmos2+Authenticator
https://wiki.daasi.de/display/DOK/didmos2+Authenticator

didmos Auth is installed as a python virtual environment and deployed as a mod_wsgi app in Apache webserver. The following locations of the VM are
used:

Component Location in file system
Virtual environment (Python) /opt/didmos2auth
Configuration /etc/satosa
Logs Ivar/log/satosa

Apache config (mod_wsgi integration) = /etc/apache?2/sites-available/auth.conf
Apache logs Ivar/log/apache2

MongoDB logs Ivar/log/mongodb

Restarting didmos Auth is possible via the Apache webserver:

systenct| {start|stop|restart|status} apache2

The application is based on Satosa and most of the configuration in /etc/satosa follows the default Satosa configuration (see https://github.com
/IdentityPython/SATOSA).

MongoDB is installed via the Ubuntu distribution during the initial Ansible setup (i.e. apt install nrongodb) .

The administration of MongoDB can be done using these commands:

systentt!l {start|stop|restart|status} nongodb

Backups of MongoDB database

Persistent data from MongoDB should be backed up frequently, especially for the registered clients in the OIDC OP. Otherwise they have to be registered
again in case of data loss.

Refer to https://docs.mongodb.com/manual/core/backups/ for general backup strategies.

Provisioner

Docker

didmos Provisioner consists of the following Docker containers:

Container Description
didmos2-rabbitmq RabbitMQ queue
{project-name}-ra Requesting authority

{project-name}-xyz-worker = Worker nodes, possible multiple containers for each target system

The logs can be accessed via docker logs (see list of general commands).

The composition of the container and basic configuration is done in the file docker-compose.yml.

https://github.com/IdentityPython/SATOSA
https://github.com/IdentityPython/SATOSA
https://docs.mongodb.com/manual/core/backups/

docker-compose.yml

ra:
i mage: ${ CUSTOVER RA_| MAGE} : ${ CUSTOMER RA TAGH
cont ai ner_name: ${CUSTOMER}-ra

depends_on:
- rabbitnyg
vol unes:

- didnps2-ra-config:/opt/daasi/didmos2/ral config/
envi ronnent :
LDAP_URL: ${LDAP_URL}
RA_LDAP_ACCOUNT_PW ${ RA_LDAP_ACCOUNT_PW
RA_SENDER_EMAI L: ${ RA_SENDER_EMAI L}
RA DEFAULT_RECEI VER_EMAI L: ${ RA DEFAULT_RECEI VER _EMAI L}
INIT_PARAM -i 2
RABBI TMQ_URL: ${ RABBI TMQ_URL}
RABBI TMQ USER: ${ RABBI TMQ_USER}
RABBI TMQ_PW ${ RABBI TMQ_PW}
LDAP_ACCESSLOG PW ${ LDAP_ACCESSLOG PW
LDAP_MANAGER PW ${ LDAP_MANAGER PW
SMIP_HOST: ${ SMIP_HOST}
SMIP_USER: ${ SMIP_USER}
SMIP_PASSWORD: ${ SMI'P_PASSWORD}
SMIP_PORT: ${ SMIP_PCRT}
extra_hosts:
- "host . docker.internal: host-gat eway"

Additional configuration is possible via docker environment variables (for supported parameters). These variables are referenced in the docker-compose.
yml and set in the .env file:

.env file

LDAP_ACCESSLOG _PW-. . .

LDAP_MANAGER PWE. . .

LDAP_URL=l dap: // host . docker . i nternal : 389
LDAP_BI ND_DN="cn=manager , dc=di dnos, dc=de"

RA_LDAP_ACCOUNT_PW£. . .

RA_SENDER_EMAI L=nor epl y@aasi . de
RA_DEFAULT_RECEI VER_EMAI L=nor epl y@xanpl e. com
RABBI TMQ_URL=r abbi t ng

RABBI TMQ_USER=adni n

RABBI TMQ_PWE. . .
RABBI TMQ_PORT=5672

For a list of general environment variables refer to didmos2 Provisioner.

After changing one or more values in the .env file a recompose has to be performed by using this command:

docker - conpose up -d

A simple restart of the affected containers does not suffice.

The basic principle of docker-compose and docker environment variables applies to all docker deployments for didmos 2.

ETL

Docker

didmos ETL consists of the following Docker container:

https://wiki.daasi.de/display/DOK/didmos2+Provisioner

® {project-name}-etl

The data and config is mounted as docker volumes from the host system like so (the variables are defined in .env):

vol unes:
- | ${ETL_DATA DI R}/:/var/didnos/:rw
- /${ETL_CONF_DIR}/:/etc/didnmos/etl/:rw

Typically the data and config directories are set as following on the host system:

® ETL_DATA_DIR=/var/didmos/etl/etl-data
® ETL_CONF_DIR=/var/didmos/etl/etl-conf

The logs can be accessed via docker logs (see list of general commands).

Configuration is possible via docker environment variables (for supported parameters) but generally via files in the volume. An example for the
configuration using docker environment variables is described in section Provisioner - Docker.

	Operations

